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Brittle fracture of low molecular weight 
polymers 

A N T O N I O S  G. MIKOS,  N I K O L A O S  A. PEPPAS 
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA 

A new model is presented to predict the fracture energy of polymers with molecular weights 
smaller than the threshold value for the formation of chain entanglements. A fracture mech- 
anism is assumed that calls for the sliding of the polymer chains in a microscopic craze at the 
crack tip. The plastic work is related to the chain interpenetration distance, which has been 
derived from the solution of the Fokker-Planck equation. The predictions of the model agree 
with experimental data of the fracture energy of polystyrene. 

1. Introduct ion  
The fracture energy of brittle polymers increases with 
the polymer molecular weight, M, up to the critical 
value, 2Me, corresponding to the onset of chain 
entanglements [1]. (The parameter Me is the molecular 
weight between entanglements.) The fracture energy 
at this threshold molecular weight is an order of 
magnitude larger than the thermodynamic work of 
cohesion. For values of Mlarger than 2Me the fracture 
energy increases abruptly with M and eventually 
reaches a plateau value [2, 31. 

In a previous publication [4] we proposed a theory 
to predict the molecular weight dependence of the frac- 
ture energy and strength for polymers with M > 2M~ 
using the structural and entanglement characteristics 
of the chain molecules. A chain scission criterion was 
invoked for the chain segments being entangled about 
the fracture plane and the theoretical predictions 
agreed with experimental measurements for poly- 
styrene and poly(methyl methacrylate). The theory 
was also used [5] to investigate the effect of chain 
entanglements on the autohesion of linear polymers 
and predict the time dependence of the refracture 
energy of poly(methyl methacrylate) interfaces. 

Polymers with molecular weights smaller than 2M~ 
are characterized by virtual lack of chain entangle- 
ments. The fracture mechanism of such low molecular 
weight polymers has been proposed by Haward et aL 
[6] and Kramer [7]. These investigators postulated that 
a craze exists at the crack tip as shown in Fig. 1. The 
craze is a cavitation zone with bundles of extended 
polymer chains bridging the confining glassy regions. 
Polymer chains anchored in both glassy regions about 
the craze can support any applied stresses. The micro- 
scopic mechanisms for the craze growth have been 
studied by Lauterwasser and Kramer [8]. The craze 
becomes unstable and the crack propagates when 
chain macromolecules fail to span the craze. 

When chain entanglements are present, polymer 
chains do not have to connect the glassy regions them- 
selves because they can form stable polymer fibrils. 
Kramer [7] developed a model to calculate the fracture 
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energy of low molecular weight polymers from the 
craze fibril extension ratio and the craze surface draw- 
ing stress observed in high molecular weight polymers. 
The predictions of the model were in good agreement 
with experimental results. 

The polymer chains in the craze are mobile, con- 
trary to those in the glass, and can slide on each other 
to create two new surfaces. Kammer [9] suggested that 
the stored elastic energy is dissipated to heat resulting 
in the formation of a plastic zone. The local tempera- 
ture rise in the crack vicinity increases the mobility of 
the polymer chains and, therefore, triggers off the 
craze formation and crack propagation. 

A new theory is proposed here to predict the frac- 
ture energy of low molecular weight polymers from 
their thermal and structural properties. The fracture 
energy is related to the thermal energy required to 
form an unstable craze, the thickness of which is 
calculated using a stochastic model. The predictions 
of the theory are compared with the experimental data 
of the fracture energy of polystyrene. 

2. Stochastic modelling of chain 
interpenetration 

We define the interpenetration distance of a polymer 
chain in an arbitrary direction as the projection of the 
chain to an axis parallel to that direction. The inter- 
penetration distance c~ is generally equal to or larger 
than the projection rx of the end-to-end distance of the 
chain to the x axis. (Here the x axis is defined normal 
to the fracture plane.) The parameter c~ is a stochastic 
variable and its average value, 3x, is calculated as 

3x = ;o 5xP(c~x) dc~x (1) 

were P(ax) dax is the probability that a polymer chain 
has interpenetration distance in the range from 8x to 
6x + dax. The polymer chain can span a craze only 
if its interpenetration distance is larger than the 
primordial craze thickness, i.e., the craze thickness 
prior to deformation (see Fig. 2). 

The probability density function P(clx) has been 
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Figure 1 Schematic presentation of  a craze formed at the crack tip 
in brittle polymer fracture. 

calculated by Weidmann et al. [10]. An alternative 
method is proposed here to derive the function P(5~) 
from the solution of  first passage problems [11]. The 
mathematical approach is similar to that we employed 
[5] to describe the tube disengagement and chain 
relaxation of high molecular weight polymers in 
polymer autohesion. 

In the stochastic modelling of chain interpene- 
tration the equivalent Gaussian chain of  the actual 
macromolecule is considered. The degree of poly- 
merization N and the statistical link length b are 
defined for polycarbon chains [4] as 

U = 2No/3Coo (2) 

b = (3/2)112Cool (3) 

where No is the degree of polymerization of the real 
chain, Coo is the characteristic ratio, and I is the bond 
length. The polymer chain is assumed long enough (i.e., 
No > 50) that the characteristic ratio is independent 
of the chain length. 

A Gaussian chain is a Markov chain, because the 
orientation of any link is independent of that of any 
previous one. Therefore, the chain configuration can 
be visualized as the result of  the random flight of a 
Brownian particle with jump length equal to the link 
length b. The probability, p(0, 0; x, N)  dx, that the 
end of the Nth  link of a polymer chain starting from 
x = 0 be found between x and x + dx is equal to 
that of a Brownian particle starting from x = 0 and 
located in the range from x to x + dx after N jumps. 
The density functionp(0, 0; x, N) is the solution of  the 
Fokker-Planck equation [11] 

b 2 c~ 2 
~?~p(0, 0; x, N) - 6 0 x  2p(O' 0; x, N)  (4) 
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Figure 2 Schematic presentation of  a polymer chain with inter- 
penetration distance 6.,. spanning a primordial craze. The x axis is 
normal to the fracture plane and its origin is located at one chain 
end. The chain configuration constitutes the trajectory of  the 
random flight of  a Brownian particle, 

If we consider the one-dimensional diffusion of a 
Brownian particle along the x-axis, the interpenetration 
distance, fix, of  a polymer chain of  degree of polymer- 
ization N is equal to the maximum separation of two 
positions, namely x = - a  and x = 5x - a, of the 
particle about its starting point, x = 0, after N jumps 
(see Fig. 2). The density function P(f~) is obtained by 
solving a first-passage problem twice. 

P(fx)  : - 2 ( ~ ) = f N d N ,  

x f2 ~ da ~xP(X, N i , a ,  f~)l~= o 

x 

X fN N 1 dN2 ~x 

x dx -~a p(x, N -  NI - N2, a, f~)l~=0 (5) 

The function p(x, N, a, fix) is the solution of  Equa- 
tion 4 subject to absorbing boundary conditions at 
x = - a a n d x  = 6 x -  a. 

2 ~ sin ( i~a ' ]  (irc(x + a ) )  p(x, N, a, 5x) = ~ ,=, \ y-f~ ) sin \ -~ 

x exp ( i2n2b2N) ) (6) 

The term (b2/6)(#/3x)p(x, N, a, 5x)1 . . . .  in Equa- 
tion 5 is equal to the probability that a particle initially 
located at x = 0 reaches the point x = - a  for the 
first time after a number of jumps between N and 
N + dNwithout  ever crossing the point x = 5x - a. 
Also, the term (O/Oa)p(x,'N, a, fix) da is equal to the 
probability that a particle starting from x = - a  is 
found between x and x + dx after N jumps without 
moving further than x = - a  - da to the left and 
x = fx - a to the right. The probability that a particle 
reaches the point x = - a  for the first time before it 
moves to x = fx - a is described by the right-hand 
side of  Equation 5. The coefficient two accounts for 
the symmetric case that the particle advances to its 
extreme position to the right before that to the left. 

The function P(fx)  can also be expressed as 

P(fx) = P(fo)/(r~) '/2 (7) 

where P(6o) is the probability density function of the 
normalized interpenetration distance, f0, defined as 

fo = f x / ( ~ )  t/2 (8) 

The mean square projection of the end-to-end distance, 
~ ,  is related to N and b as follows 

2 Nb2/3 (9) r x 

3. Fracture  energy 
The fracture energy, Gv, of a brittle polymer is defined 
as the energy required to separate one unit interfacial 
area [12]. It consists of  two components: (i) the plastic 
work, Wp; and (ii) the thermodynamic work of 
cohesion, W~. 
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The work of cohesion is reversible, whereas the plastic 
work is irreversibly dissipated to heat. The value of 
W~ represents the limiting fracture energy of an 
ideal brittle material. For most polymers the energy 
dissipated to other processes, such as static electrifi- 
cation and light and acoustic emissions, is much smaller 
than Wp and can be neglected. 

The value of Wp is postulated equal to the thermal 
energy required to form an unstable craze per unit 
area. The craze thickness ranges from zero to its 
maximum value at the crack tip. The craze thickness 
before deformation at the crack tip is invoked equal to 
average chain interpenetration distance. It is apparent 
from Fig. 2 that the value of 3x characterizes a stable 
craze and not that of (~)1/2. Consequently, the plastic 
work is obtained as 

Wp = 3xoc(Tg-  T) (11) 

where ~ is the polymer density, c is the specific heat 
and T is the experiment temperature. A craze is 
obtained when the local temperature becomes equal to 
the glass transition temperature, Tg, which is a func- 
tion of the chain length for low molecular weight 
polymers [13]. Equation 11 should be regarded in a 
scaling context, because a polymer chain has a finite 
probability to exhibit any interpenetration distance up 
to its fully extended length. 

The work required to pull apart an unstable craze 
per unit area is equal to the thermodynamic work of 
cohesion 

W~ = 27 (12) 

where the polymer surface tension, 7, is evaluated at 
the craze temperature, Tg. The value of ~ varies with 
the temperature and is dependent on the molecular 
weight only in the oligomeric range [12]. 

4. Results and discussion 
The variation of the probability density function P(6o) 
with the normalized interpenetration distance, 60, is 
computed numerically from Equations 5 and 7 and 
is shown in Fig. 3. Theprobabili ty that the value of 
3ix is smaller than 0.6(~f/2 and larger t h a n  4(~x)  I/2 

is approximately equal to zero. The average chain 
interpenetration distance, 3x, is calculated from 
Equation 1 as 

5 x = 1.59 (r2x) '/2 (13) 

The same results were also obtained by Weidmann 
et al. [10], who derived an analytical expression for 
P(3~). Nevertheless, the proposed analysis is more 
general, because it includes the calculation of the 
chain length probability associated with the extreme 
location and, therefore, can be used to solve problems 
involving segmented chain structures, e.g., block 
copolymers. 

Recognizing that the degree of polymerization, No, 
of the real chain is related to the molecular weight, 
M0, and the number of backbone bonds, j, of the 
monomer repeating unit as 

j M  
No - (14) 
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Figure 3 Variation of the probability density function, P(60) , with 
the normalized chain interpenetration distance, 60 . 

4 

the fracture energy, GF(M), is derived from Equa- 
tion 10 as 

( Coo j M  ~1/2 
Gv(M) = 0.92 \ ~ j  l~c(Tg - T) + 27 

(15) 

The important feature of the model is that the fracture 
energy is only related to polymer material properties. 
The scaling law Gv ~ m 1/2 is not valid because of the 
molecular weight dependence of Tg. 

Experimental data [1] of the fracture energy of 
monodisperse polystyrene (PS) samples of different 
molecular weight, which were obtained by a cleavage 
technique at T = 293 K, are compared with theoreti- 
cal predictions from Equation 15 in Table I. The glass 
transition temperature of PS satisfies Equation 16 
over the entire molecular weight range [13] 

1 1 1.2 • 105 1 
Tg - Tg(oo~ + T~(oo) M (16) 

with Tg(~) = 373K. The surface tension (in J m  2) 
of PS is expressed as a function of temperature [14] as 

7 = 6.18 • 10 - 2 -  7.2 • 10-ST (17) 

The other physical properties of PS used in the calcu- 
lations include: Coo = 10, j = 2, M0 = 104, l = 
1.54 • 10-~~ [15]; and 0 = 1050kg m-3, c = 
1300Jkg t K -1116]. 

The predictions of the model agree well with the 
experimental results for the first four samples. The 

TAB L E I Fracture energy components of various monodisperse 
polystyrene samples 

M Tg Wp ~ Gv~l r GF~w,I* 
(K) (Jm 2) (Jm 2) (jm_2) (Jm 2) 

3550 342.0 0.247 0.074 0.321 0.34 
10300 361.7 0.590 0.072 0.662 0.60 
20500 367.2 0.899 0.071 0.970 0.94 
34500 369.6 1.203 0.070 1.273 1.64 

l l l000 371.9 2.225 0.070 2.295 96.7 

*Reference [1]. 
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Figure 4 Comparison of theoretical predictions with experimental 
results [ll of the variation of the fracture energy, GF(M), of 
monodisperse polystyrene samples with the normalized molecular 
weight, M/2Me. 

measured value of GF for M = 111 000 is two orders 
of magnitude larger than the calculated one. This 
discrepancy is expected, as the employed fracture 
mechanism is valid only for values of M smaller than 
2Me. The primordial craze thickness is not limited to 
the chain interpenetration distance when the polymer 
chains can be entangled. For  PS the molecular weight 
between entanglements is 18 100 [17]. 

The plastic work dominates over the work of 
cohesion as the molecular weight increases. The 
plastic work diminishes for test temperatures close to 
the glass transition temperature. Also, the fracture 
energy is equal to the thermodynamic work of cohesion 
for oligomers having ~ lower than the experiment 
temperature. Here the change ofy  with M [12] must be 
included in the calculations. From Equation 16 it is 
implied that PS samples with M < 1180 exhibit glass 
transition temperatures smaller than 293 K. 

The variation of the fracture energy, GF(M) ,  with 
the normalized molecular weight, M/2M~,  is also 
shown in Fig. 4. The agreement between theory and 
experiment for M < 2M~ supports the proposed frac- 
ture mechanism. The other possible fracture mech- 
anism [8] involves the scission of  all chain links cross- 
ing the fracture plane. In that case the fracture energy 
would scale to the total number of chain crossings per 
unit area, which was found [4] independent of the 
molecular weight. Therefore, from the use of a chain 
scission fracture criterion one infers that the fracture 
energy does not change with the molecular weight, 
contrary to experimental findings. Thus, chain scission 
only occurs in the fracture of high molecular weight 
polymers [4]. 

The fracture energy of  low molecular weight 
polymers can also be estimated from a micromechani- 
cal model developed by Kramer [7] 

GF = S c ( ) ~ -  1)N'/2b (18) 

Here S~ is the craze surface drawing stress equal 
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Figure 5 Variation of the maximum extension ratio, 2, of a poly- 
styrene chain with the normalized molecular weight, M/2Me. 

to 30 x 106Nm z for PS. The extension ratio, 2, 
of the polymer chains at the crack tip was assumed 
independent of the chain length and equal to the corre- 
sponding value for high molecular weight polymers. 
We showed [4] that for M > 2M~ the maximum 
extension ratio of  the polymer segments before they 
break is equal to N~ ~/2, where Ne is the degree of 
polymerization between two consecutive entangle- 
ments. For M < 2Me a polymer chain cannot be 
entangled and its maximum extension ratio, 2, is given 
by 

Nb 
2 - Nil2 b - N 1/2 (19) 

The variation of 2 of a PS chain with the normalized 
molecular weight, M / 2 M e ,  is presented in Fig. 5. The 
highest value of 2 is 6.8 and characterizes a chain with 
molecular weight M = 36 200. 
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Figure 6 Comparison of theoretical predictions of Kramer's model 
for 2 = 4 [7] (solid line) and 2 = N 1/2 (broken curve) with experi- 
mental results [1] of the variation of the fracture energy, GF(M), of 
monodisperse polystyrene samples with the normalized molecular 
weight, M/2M~. 
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The calculated PS fracture energies from Equation 
18 are in better agreement with the measured ones (see 
Fig. 6) if an average value 2 = 4 [7] is invoked rather 
than using those from Equation 19. However, polymer 
chains can only exhibit an extension ratio of 4 for 
M > 12480. Shorter chains have a maximum exten- 
sion ratio always smaller than 4, provided that there is 
no bond length and bond angle distortion due to the 
chain deformation. Thus, the lack of experimental 
data for the craze extension ratio of low molecular 
weight polymers renders ,~ in Equation 18 an empirical 
parameter. 

5. Conclusions 
Stochastic modelling was used to calculate the average 
interpenetration distance, 5x, of a polymer chain. The 
plastic work of fracture was assumed equal to thermal 
energy needed to heat a zone of thickness 3x from a 
reference temperature to the glass transition tem- 
perature. A simple model that includes no adjustable 
parameters was developed to calculate the fracture 
energy, GF, of a polymeric material. Theoretical 
predictions of the fracture energy of polystyrene were 
in good agreement with experimental measurements 
for molecular weights, M, smaller than 2Me. From the 
variation of G F with M we deduced that the polymer 
chains slide on each other rather than being ruptured 
in brittle fracture of low molecular weight polymers. 
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